On the Derivation of Nonlinear Shell Models from Three-dimensional Elasticity

نویسنده

  • Cristinel Mardare
چکیده

A nonlinearly elastic shell is modeled either by the nonlinear threedimensional shell model or by a nonlinear two-dimensional shell model. We show how such two-dimensional shell models can be derived from the minimization problem associated with the nonlinear three-dimensional shell model. For shells made of a Saint Venant-Kirchhoff material, we obtain in particular the nonlinear shell models of Naghdi, of Koiter, and of Ciarlet-Koiter. Finally, we justify these shell models for small deformations. Resumé. Pour modéliser le comportement d’une coque non linéairement élastique, on peut utiliser soit le modèle non linéaire de l’élasticité tridimensionnelle, soit un modèle bidimensionnel nonlinéaire de coques. Nous montrons comment de tels modèles bidimensionnels de coques peuvent être déduits du problème de minimisation associé au modèle non linéaire de l’élasticité tridimensionnelle. Pour une coque constituée d’un matériau de Saint Venant-Kirchhoff, nous obtenons en particulier les models de Naghdi, de Koiter, and de Ciarlet-Koiter. Nous justifions enfin ces modèles de coques en petites déformations. 2000 Mathematics Subject Classification. 74K25, 74G10, 74G65.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional Magneto-thermo-elastic Analysis of Functionally Graded Truncated Conical Shells

This work deals with the three-dimensional magneto-thermo-elastic problem of a functionally graded truncated conical shell under non-uniform internal pressure and subjected to magnetic and thermal fields. The material properties are assumed to obey the power law form that depends on the thickness coordinate of the shell. The formulation of the problem begins with the derivation of fundamental r...

متن کامل

The membrane shell model in nonlinear elasticity: A variational asymptotic derivation

We consider a shell-like three-dimensional nonlinearly hyperelastic body and we let its thickness go to zero. We show, under appropriate hypotheses on the applied loads, that the deformations that minimize the total energy weakly converge in a Sobolev space toward deformations that minimize a nonlinear shell membrane energy. The nonlinear shell membrane energy is obtained by computing the Γ-lim...

متن کامل

The Nonlinear Bending Analysis for Circular Nano Plates Based on Modified Coupled Stress and Three- Dimensional Elasticity Theories

In this paper, the nonlinear bending analysis for annular circular nano plates is conducted based on the modified coupled stress and three-dimensional elasticity theories. For this purpose, the equilibrium equations, considering nonlinear strain terms, are calculated using the least energy potential method and solved by the numerical semi-analytical polynomial method. According to the previous ...

متن کامل

First Principles Derivation of Displacement and Stress Function for Three-Dimensional Elastostatic Problems, and Application to the Flexural Analysis of Thick Circular Plates

In this study, stress and displacement functions of the three-dimensional theory of elasticity for homogeneous isotropic bodies are derived from first principles from the differential equations of equilibrium, the generalized stress – strain laws and the geometric relations of strain and displacement. It is found that the stress and displacement functions must be biharmonic functions. The deriv...

متن کامل

The Infinite Hierarchy of Elastic Shell Models: Some Recent Results and a Conjecture

We summarize some recent results of the authors and their collaborators, regarding the derivation of thin elastic shell models (for shells with mid-surface of arbitrary geometry) from the variational theory of 3d nonlinear elasticity. We also formulate a conjecture on the form and validity of infinitely many limiting 2d models, each corresponding to its proper scaling range of the body forces i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009